The probability that the number of points on the Jacobian of a genus 2 curve is prime

نویسندگان

  • Wouter Castryck
  • Amanda Folsom
  • Hendrik Hubrechts
  • Andrew V. Sutherland
چکیده

In 2000, Galbraith and McKee heuristically derived a formula that estimates the probability that a randomly chosen elliptic curve over a fixed finite prime field has a prime number of rational points. We show how their heuristics can be generalized to Jacobians of curves of higher genus. We then elaborate this in genus g = 2 and study various related issues, such as the probability of cyclicity and the probability of primality of the number of points on the curve itself. Finally, we discuss the asymptotic behavior for g → ∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Theorem of Coleman

A simplified method of descent via isogeny is given for Jacobians of curves of genus 2. This method is then used to give applications of a theorem of Coleman for computing all the rational points on certain curves of genus 2. 0 Introduction The following classical result of Chabauty [3] is a curiosity of the literature in that there has been a 50 year period during which applications have been ...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

Counting Points on the Jacobian Variety of a

Counting the order of the Jacobian group of a hyperelliptic curve over a nite eld is very important for constructing a hyperelliptic curve cryptosystem (HECC), but known algorithms to compute the order of a Jacobian group over a given large prime eld need very long running times. In this note, we propose a practical polynomial-time algorithm to compute the order of the Jacobian group for a hype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012